ENSO in an Ensemble of Ocean Reanalyses

Ben Giese/Kelley Bradley TAMU

Gil Compo / Prashant Sardeshmukh / Jeff Whitaker NOAA/CIRES

OARCA – Ocean Atmosphere Reanalysis

• 20CRv2 - Forced with 1 member HadISST (1871-2012)

• SODAsi.2 – 18 Member Ocean reanalysis (1845-2012)

• 20CRv2c – Forced with 18 members of SODAsi.2 (1831-2012)

• SODAsi.3 – 8 Member ocean reanalysis forced with 20CRv2c (1831-

SODA XP – 56 Ensemble members

Five year global ocean assimilation & simulation runs

- Two periods, both with a strong El Niño
 - 1916-1920, sparse observations (WWI)
 - 1996-2000, densely observed
- Four runs with 56 ensemble members each

Niño 3.4 SST

Blue - HadISST Black - SODAsi.1 Red - SODA XP

8 Group Averages 7 Ensemble members each

DJF ENS average 08 - ENS average 02

Group 2

Each Member

Group 8

Each Member

Niño 3.4 SST – Groups 2 and 5

Niño 3.4 SST

Red – Difference between Group mean and 56-member mean

Blue – Difference between 8 member mean – one from each group and 56-member mean

- Two sources of uncertainty in the ocean reanalyses
 - 1. Inherent atmospheric noise
 - Present with both sparse and dense observations
 - 2. Prescribing SST to the atmosphere
 - Increasing observations markedly reduces this uncertainty
- A coupled reanalysis system is required to represent the range of possible climate states for periods of few observations